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Abstract 

A language is developed for %cohomology, which is different from both the Dolbeault and 
the &ch descriptions, and involves only holomorphic objects. This language is then illustrated in 
certain cases of interest to representation theory. This makes possible a new geometric construction 
of the ladder representations for SU(2, p) and the non-holomorphic discrete series representations 
of SU(2,l). The constructions are closely related to Penrose transforms. 
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0. Introduction 

We develop in this paper a holomorphic language for %cohomology and apply it to 
representation theory. The outline of this project was discussed in [G2]. The idea is to 
associate a Stein manifold X to a complex manifold M. Tire &cohomology of M may then 
be realized by a purely holomorphic construction on X. When M is a flag manifold for a 
semisimple Lie group G, the Stein manifold X may often be chosen explicitly so that G acts 
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on this construction. As a result, we can give a holomorphic realization of the associated 
representations. 

It turns out that sometimes there is a ‘holomorphic’ version of Hodge theory: canonical 
representatives can be picked from the cohomology classes by means of complex analytic 
structures only. Of course, we cannot generally expect such a Hodge theory (in the sense just 
indicated), but it is our belief that the structures involved in representation theory are rich 
enough for such a theory. It should be mentioned that this Hodge theory depends crucially 
on the geometry of certain maximally compact submanifolds (called linear cycles) of the 
flag domains involved. In this paper we consider a few examples to illustrate the program 
just explained. 

All these are closely related to Penrose transform, as is the content of [G2], which in 
turn follows [GH,Gl]; however, the machinery is different. Both [GH,Gl] give explicit 
formulae for Penrose transforms. They use the method of integral transform to map the 
space of Dolbeault cohomology to the solution space of certain differential equations (which 
generalize the zero-rest-mass equation) on the space of the linear cycles. They then map this 
solution space to our space of canonical representatives by means of a differential operator 
K. The papers [RSW,S,WW,W] are of related interest. 

It is hoped that in the future we can produce the unitary structures of the representations 
by considering suitable integrals involving the canonical representatives. In fact, concrete 
formulae have been proposed in [G2] for that purpose. We believe that these, or suitable 
variations thereof, should yield the unitary structure we are after. 

Here is a brief outline of the paper. In Section 1.1, a Tech theory with holomorphic 
parameters is developed. Then in Section 1.2, another and more direct way of relating Tech 
cohomology groups with Dolbeault cohomology groups is explained. This ends the general 
part of this paper. The second part is devoted to illustrating the aforementioned Hodge 
theory. Section 2.1 explains the aim of this theory and illustrates it in the case of an arbitrary 
generalized flag manifold. Concrete formulae are given for the case of Pt ; this result is basic 
to all the subsequent sections. Section 2.2 describes the ladder representations of SU(2, p) 
and Section 2.3 is on the Hodge theory in the case of the non-holomorphic discrete series 
representations of SU(2,l). 

1. General theory 

1.1. tech theory with holomorphic parameters 

Let M be a complex manifold and V + M a holomorphic vector bundle. To compute 
H’(M, U(V)), Tech theory is often employed, usually with a Stein cover. In [G2], a Tech 
theory with smoothly varying parameters is developed. The idea is as follows. Instead of 
using a Stein cover (Uj)jE~, where J has no special structure, use a Stein cover {U~)~,,- 
where d ’ IS a manifold and Ut depends ‘smoothly’ on 6. In ordinary Tech theory the 
differentials are difference operators whereas, as discussed in [G2], in the ‘smooth’ theory 
they are differential operators. Here is a variation mentioned in [G2]. The difference is that 
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complex analytic parameters are used, and the existence of an open cover consisting of 
Stein sets is replaced by a closely related condition. To establish the isomorphism between 
Tech cohomology groups and the corresponding Dolbeault cohomology groups, a double 
complex is used, into which both the Dolbeault complex and the Tech complex inject via 
chain maps; it turns out that both chain maps are quasi-isomorphisms; see [Gu] for details. 
As a general rule, the results and their proofs in this and the next section are modifications 
of the corresponding case of Tech cohomologies. 

Theorem 1.1. Suppose that II : X + M is a holomorphic submersion with contract- 
ible jibers and that X is Stein. Then the holomorphic relative de Rham cohomologies 
H’(f (X, f2: (V))) are canonically isomorphic to the Dolbeault cohomologies H’(M, 
O(V)). Here .rZ: denotes the holomorphic relative de Rham complex. 

ProojI While the proof of this theorem is standard (see, for example, [BE, pp. 69-721) for 
our purposes the following explicit construction is more useful. Firstly, consider the case 
where V is the trivial line bundle. Let Ai denote the sheaf of germs of smooth complex- 
valued r-forms on X. Define the sheaf A’ by 

A’ E A;/x*A$’ and, more generally, A’ = A A’ = A’,/(n*Ak’ A A:‘). 

The short exact sequence 

O_,I~*A~‘+A’+A~+O 

induces a filtration of the complex f (X, A*) and thereby a spectral sequence (see [BES] 
or [WI for details). The contractibility of the fibers implies that this spectral sequence 
degenerates into an isomorphism 

H’(M,O) E H’(r(X,A*)). 

Now we use that X is a complex manifold to decompose A’ : 

(1.1) 

A’ = @ Ai’.q, whereAP,q s ‘P,“/@ ‘kf * ““~A$-“q) forp > 1, 

p+q=r A;*‘@ A:’ for all p. 

This is a double complex whose total complex is just A’. Since X is Stein, the cohomology 
of the complex 

f(X, A, P*“@A2’) 

is r(X, JI&$‘> in degree zero and otherwise vanishes. Therefore, the corresponding spectral 
sequence implies that 

H’(f (X, A*)) E H’(r(X, Q;)). (1.2) 

Combining (1.1) and (1.2) gives the required natural isomorphisms. The proof for a general 
V is obtained simply by tensoring with V throughout. Thus, we define 
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A’(V) E (A; @ n*V)/rr*(~I’~’ @ V) 

and so on. It is easy to check that this does not affect the argument. 0 

Remark 1.2. Each of the complexes (i.e. the holomorphic relative de Rham complex, the 
Dolbeault complex, and the complex A*) has a natural Frechet topology, and the two quasi- 
isomorphic chain maps (each injects into A*) are continuous. It is well known that a continu- 
ous quasi-isomorphism between complexes of Frechet spaces induces a quasi-isomorphism 
of topological vector spaces. Therefore, computing sheaf cohomologies using either the 
holomorphic de Rham complex or the Dolbeault complex yields the same topological vec- 
tor spaces. In particular, if one complex has the closed range property in a particular degree, 
then so does the other. 

1.2. Pulling-back the d;ech complex 

The isomorphism of Section 1.1 can be obtained directly as follows. Choose a smooth 
section y : M + X of n : X + M. Since the fibers of rr are contractible, this is always 
possible (see [St, Sections 29.8 and 34.21) and, in case X is a Stein neighborhood of M 
inside its complexification, we may take y to be the tautological diagonal embedding. For 
we r(X,~~(V)>,locallywemaych~eijasectionofA~’(V),suchthati3~ ounder 
the natural projection 

A’*‘(V) + A;‘(V) > Q;(V). 

We may now form (v*iG) ‘, ’ , the (0, r)-component of the pull-back of i3 to M under y. In 
fact, this is independent of choice of G since, if g is another, then we may write 

N 
z-g= 

c X*O!i A pi 
i=l 

for suitably chosen (l,O)-forms ai on M with coefficients in V and (r - l,O)-forms pi 
on X. Since n o y = Iw, we conclude that 

N 

)f*ij - y*Z = CCXi A _V*Bi 
i=l 

has no (0, r)-component. Let KW E r(A4, A(V)) be defined,by the local formula KO = 

o/*i3p. 

Theorem 1.3. The dejinition of K as above gives a chain mapping 

K : r(x,fi;(i’)) + f(M,A’*‘(V)), 

which induces the isomorphism of Theorem 1.1. 

Prooj Firstly, consider the case where V is the trivial line bundle. To see that K is a chain 
mapping, notice that we may take 6? to be holomorphic, i.e. a local section of QT. We may 
then choose & = dij whence 
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and so K is a chain map. A careful examination of the proof of Theorem 1.1 shows that if 
o E r(X, C?;) satisfies d,w = 0, then the corresponding t E f (M, A03 ‘) is characterized 
up to cohomological freedom by the equation 

ij-n*t+p=da, 

where CT E r(X,A’-‘),G E r(X,A’*‘) is a lift of o E r(X,A:‘),r E r(M, A’*‘), 
p E f (X,n*A’,’ A A’-‘). 

Since n o y = l,+r, it follows that (v*p)‘, r = 0. Hence, 

Km - r = (~/*ij)‘,~ - r = (v*da)“,r = (dv*a)o*’ = ~((y*,)“*r-l) 

and so KO and t represent the same cohomology class, as required. For a general V, the 
same argument goes through except that, in order to differentiate forms with coefficients in 
V, one needs to choose a connection on V compatible with the complex structure. 0 

Remark 1.4. The definition of K involves choosing a smooth section y of the holomorphic 
submersion rr : X + M. In making this choice we are leaving the holomorphic category 
but this is to be expected and is entirely consistent with our philosophy, since the definition 
of Dolbeault cohomology also involves non-holomorphic objects; the link between the 
holomorphic and non-holomorphic categories is this non-holomorphic section y 

2. Illustrating examples 

2.1. Hodge theory: Aim and first example 

By a holomorphic Hodge theory is meant the study of the following situation. Represent 
a Dolbeault cohomology group as a holomorphic relative de Rham cohomology group 
(as in Section 1.1); sometimes, as will be seen, there is a preferred representative in each 
relative de Rham class. This representative, which, for lack of better terminology, is called 
a holomorphic harmonic form, is picked out as a solution of a differential operator which 
decreases the degree of the relative differential form by one. When it occurs, this is clearly 
analogous to the ordinary Hodge decomposition. This decomposition pertains in many 
interesting settings (and for non-compact manifolds): the second part of this paper is devoted 
to various examples which illustrate this phenomenon. 

The first example is that of an arbitrary generalized flag manifold with a homogeneous 
vector bundle on it. For that purpose, note that a generalized flag manifold can be thought 
of as K/L, where K is a compact Lie group, and L the centralizer of a torus. As a complex 
manifold, M = Kc/Q, where Q is a parabolic subgroup of Kc, and there is a Levi 
decomposition Q = LcU. Let X = Kc/Lc, by a theorem of Matsushima [Ma], X is Stein. 
The obvious projection n : X + M gives a Kc homogeneous holomorphic fiber bundle 
and the typical fiber is U, which is Euclidean. So the situation in Section 1 is obtained. In 
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fact, there is a K-equivariant section y : M + X, which sends k . L to k . Lc. It may be 
of interest to observe that X is an open subset of Kc/Q x Kc/e, where Q is the complex 
conjugate of Q, viewed as a complex subgroup of Kc. 

Denote by fl the complex conjugate of U and by ii and II the corresponding Lie algebras. 
They may, depending on the context, denote complexijed Lie algebras or real Lie algebras 
of complex groups. Now let V be a finite-dimensional irreducible Q-module, this induces 
a holomorphic vector bundle V + M. 

The holomorphic relative de Rham complex r(M, &?; (V)) can be represented, via pull- 
back from X to Kc, as C’ z (C)(Kc) 8 V @ A~u*)~C . The relative differential is given by 
Q E -(r(Xi) @ e(Xi) + :Z @I e(Xi) o ad(Xi)] (where summation over the subscripts is 
assumed). Here (Xl, X2, . . .) C II is a basis chosen SO that (Xi, xj) = -6ij, (where ( , ) 
is the Killing form of tc), e( ) means exterior product, and U is identified with II* via the 
Killing form. 

Next, define the dual operator dz : C’ + C’-’ by 

di: E -(r(xi) 8 l(Xi) + $Z @ ad(Xi) o l(Xi)). 

Again, summation over the subscripts is assumed and the notation 1 stands for contraction. 
Observe that, for each i, we have ad(Xi) o l(Xi) = l(Xi) o ad(Ti). The definition of this 
dual operator is motivated by the following lemma. 

Lemma 2.1. Kdz = a*~. 

ProoJ Use [GS, 5.71. The Cauchy-Riemann equations are implicitly used. 0 

Remark 2.2. 
(1) The action of ad(Xi) on u* is understood as follows. Extend an element of u* to one 

of g* by zero on 1~ $ ii; as such, ad(Xi) makes sense. 
(2) The adjoint Dolbeault operator a* is defined relative to the Hermitian metric defined 

by using the Killing form oft. 
(3) By an elementary computation, dz = -r(x) @I l(Xi) when the form is of top degree. 

(Here, of course, the summation convention is in place.) 

Lemma 2.3. For each class in H’(C’), there is at most one harmonic representative, i.e. a 
holomorphic relative r-form on X for which d,w = 0 = dzw. 

Pro05 Suppose 01 and 02 are cohomologous and harmonic. Let $J = wt - W. Then 
d,# = 0 = ds# and 4 = dn@ for some +. 

Apply K to all the equations above and recall Lemma 2.1. It follows that K+ is a harmonic 
form in the usual sense and is exact. Hence K$ = 0 and therefore ~‘4 = 0. However, the 
image of y sits inside X as a totally real submanifold, so 4 = 0. ??

From this immediately follows the corollary. 
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Foranyw E Wdefine&, : Kc + W#by&(k) = ((k-‘w,)ci)~Do-‘“)~(ei~l_zp(a)). 
It is routine to verify that the definition is independent from the choice of {Ai) and that &, 
defines a holomorphic relative top form on Kc/Lc with values in the vector bundle induced 
from W#. 

Clearly &, is non-zero and closed; it remains to see that it is harmonic. By Remark 2.2, 
it suffices to show r(x)&, = 0. However, r(x)&,(k) = -(k-‘v,xhj) @ (ej @ l-~(n)) 
and since hj E W*[“], this expression vanishes. 

The following proposition summarizes all these arguments. 

Proposition 2.6. When V is irreducible and HS(M, V) # 0, there is a non-zero holomor- 
phic harmonic form. 

By the generalized Borel-Weil-Bott theorem, it is known that, under the conditions of 
Proposition 2.6, HS(M, V) is an irreducible representation of K. The space of all holomor- 
phic harmonic s-forms also forms a representation. From Corollary 2.4 and Proposition 2.6, 
we may deduce that these representations agree. We have proved the following corollary. 

Corollary 2.7. When V is irreducible, there is a unique holonwrphic harmonic represen- 
tative in each holomorphic relative de Rham class of degree s. 

Here is an equivalent, but sometimes more useful, statement. 

Corollary 2.8. There is a direct sum decomposition 

CS = kerdz @ imd,. 

The rest of this section is devoted to the case of M = OFPI. This is, of course, a special 
case of what has just been described. It is included here because the formulae are so simple, 
and also because this is the case which will be used in the following sections. See [ET] for 
notational details. 

Let 

X = Pl X PT \ {([Zil, [t’]) Set- Zi(’ = 019 

with n : X + M being projection onto the first factor. We are using here the Einstein sum- 
mation convention or, more precisely, Penrose’s abstract index notation [PR]. The smooth 
section y : M + X is given by v([zi]) = ([zi], [Z’]). 

Let O(k) denote the usual holomorphic line bundle on Pt whose sections can be identified 
locally as holomorphic functions f(zi) homogeneous of degree k. Let $2: (k) denote the 
holomorphic relative de Rham complex on X with coefficients in the pull-back of O(k) to X. 
Let O(k, 1) denote the sheaf of germs of holomorphic functions of (zi, 6’) homogeneous 
of degree (k,l) in the sense that f(Azi, ~6’) = Ak/.L’f(zi,ti). This is the sheaf of local 
sections of a holomorphic line bundle on X. 

The bundle Q;(k) may be identified with O(k, - 2) in which case the inclusion into 
Oi(k - 1, - 1) is given by g H Eijtjg. Therefore, the operator dn : O(k, 0) + 0(k, - 2) 
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may be given directly by the formula 

f- 
1 a.f -EijZj _ 

zrnp ap, 
The formula for the ‘adjoint’ is 

O(k, - 2) 3 O(k, 0) 

w W 

The operators are the same, up to a non-zero multiple, as the ones given in the context 
of a generalized flag manifold. 

2.2. Application to certain ladder representations 

Let G = SU(2, p). On the domain 

M = ([z~l E P,+l s.t. 1211~ + 1~21~ - lzj12 - . . . - Izp+d2 - Izp+212 > o), 

tbe group G acts transitively. (We are using upper case abstract indices, in effect ranging 
over(l,2,. . . , p + 2), to distinguish from the previous section. In the next section we shall 
have need for both types.) In fact M = G/L, where L = S(U(1) x U(1,p)). Let O(k) 
denote the usual holomorphic line bundle on complex projective space and hence on M. 
J_.et 

X = (z, 4) E h4 x M s.t. 
z # e and the line joining z and e in projective 
space lies entirely inside M 

and 

1 E Grz(@p+2) s.t. when 1 is regarded as a line in P,+, 
it lies entirely inside M. 

Note that Y = G/K where K = S(U(2) x U(p)). It is well known that Y is Stein (it may 
be realized as a tube domain over a cone). We maintain that X is also Stein. To see this, 
define a mapping 

X -_, (PI x PI\ diagonal) x Y 
W W (2.1) 

([zrlv [hl) - (([zl, ~21, El, 621). the line joining z and 6) 

It is easy to check that this is a biholomorphism. The right-hand side is a product of Stein 
manifolds and hence Stein. 

Define IT : X + M as projection onto the first factor. The fibers are homeomorphic 
to the Cartesian product of C with a ball in CJ’. In particular, they are contractible. From 
Theorem 1.1, we may conclude that H’(f (X, 52; (k))) is isomorphic to the Dolbeault 
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cohomology H’(M, 0(k)). In order to study H’(r(X, L?i (k))), let us introduce one more 
space 

F = ((z, 1) E M x Y s.t. z E l} 

‘between’ X and M in that n factors as 

X<F%i. 

Here, p(z, 6) = (z, I) where 1 is the line joining z and 6, and cr(z, 6) = z. The short exact 
sequence 

0 + p*C?;(k) + L?;(k) + Q;(k) + 0 

induces a filtration of the complex f (X, Qz (k)) and hence a spectral sequence 

E;” = r(X, a,4 8 /3*S2i(k)) _ Hp+q(r(X, G$)). 

For fixed p, the differentials at this level are the relative exterior derivatives dp. The fibers 
of /l are homeomorphic to @ and we may apply Theorem 1.1 again to conclude that 

Ef” = Hq(F,SZ,P(k)). (2.2) 

Indeed, more precisely, the mapping 

F - Pl x Y 
W W 

(z,O - (lZl,Z21,U 

is a biholomorphism compatible with (2.1), so we may regard /3 : X + F as simply the 
Cartesian product with Y of the situation discussed in Section 2.1. In particular, we may 
deduce from Corollary 2.8, that there is a direct sum decomposition 

f (X, Qt~(k)) = ker d; : r(X, Q;(k)) + r(X, O(k)) 

@I imdp : r(X,O(k)) + r(X,Qj(k)). 
(2.3) 

Here, if we identify Q;(k) as C3(k + 1, - l), then di : L’;(k) + L’;(k) = U(k) is given 
by 

ag d;g = 61~. 

Define dc : SzJ (k) + Qi (k) to bc the natural projection G?i (k) + C?j (k) followed by dZ;. 

Theorem 2.9. For k 5 -2, each relative de Rham class in H1 (f(X, 52: (k))) has a 
unique representative o such that dzo = 0. 

Prwo$ According to (2.3), every relative de Rham class can be represented by a relative 
form o on X with dsw = 0. Suppose i;i is another such form in the same cohomology 
class, i.e. 

w-ij=d,f 
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for some f E r(X, O(k)). Let v = o - i3. Then v E r(X, L?:(k)) satisfies dzv = 0 and 
is of the form d,f. Its image i? in r(X, Q;(k)) satisfies d;V = 0 and is of the form dpf. 

From (2.3), it follows that ij = 0. In other words, v E r(X, B*&!:(k)). Now, in particular, 
dpv E r(X, fij @p*QL(k)) vanishes and so v = #3*j~ for some I_L E r(F, Q:(k)). Recall 
that F 2 lFpl x Y. It is easy to check that, when restricted to each PI, 

Q;(k) g O(k + 1) $ C3(k + 1) $. ‘. @ C3(k f 1) L 
P 

(see, for example, [E] where L?A (k) is denoted (-k Ill- 1, 0, . . . , 0)). If k I -2, this cannot 
have any global sections. Hence p = 0, and uniqueness is shown. 0 

Remark 2.10. Since the relative de Rham cohomologies are isomorphic to the correspond- 
ing Dolbeault cohomologies, by [Wo], these spaces of holomorphic harmonic forms are the 
maximal globalizations of the underlying Harish-Chandra modules (which are, in fact, 
Zuckerman modules). The condition k 5 -p - 1 is the weakly good condition in [V, Theo- 
rem A I] for the Zuckerman modules. In fact, for vanishing of cohomologies of degree other 
than one, k 5 -1 is sufficient; see [RSW, 10.41. The proof of Theorem 2.9 also shows this 
vanishing for k 5 - 1. Note that the spectral sequence (2.2) is the usual spectral sequence 
(e.g. [BE, p.721) for the Penrose transform. 

In [G2], a different harmonic condition is used. For a closed relative one-form o = 
o’(z, ode,, our harmonic condition is precisely t~(a/az_~)(o’z,) = 0, whereas the con- 
dition in [G2], henceforth called “the strong harmonic condition”, is ~J@/~zJ)w = 0 for 
all I. Clearly, the strong harmonic condition implies the harmonic condition. The converse 
is true when the Dolbeault cohomology space of degree one is irreducible (or zero) as a 
G-module (for example, if the weakly good condition k 5 -p - 1 holds, see [V, Theo- 
rem A I]). To see this, observe that the space of strongly harmonic one-forms is a G-invariant 
submodule, so it suffices to see that it is non-zero. The form 

0= 
Kk-2 

(zoh - ZIWk God61 - -5&o) 

is easily verified to be strongly harmonic (and is well defined if k 5 -2). Hence, we have 
the following lemma. 

Lemma 2.11. When k 5 -p - 1 our harmonic condition is equivalent to the (strongly) 
harmonic condition in [G2]. 

2.3. Discrete series ofSU(2, 1) 

Let G = SU(2,l) and K = S(U(2) x U(1)) a maximal compact subgroup. The flag 
manifold of G is 

IF = ((z, Z) E lFD2 x la; s.t. the point z lies on the line Z). 
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The natural G action on F has three open orbits one of which, say M, is associated to the 
non-holomorphic discrete series. To describe M, introduce 

B = ([z~l E P2 s.t. 1~11~ + lz212 - lzd2 < 01, 

then we have 

M = (z, Z) E IF s.t. the point z lies outside the closed ball B 
and the line Z intersects B 1. 

It can be verified that M = G/T, where T is the diagonal subgroup (i.e. a compact Cartan 
subgroup). Let 

z#uandZ#U, 

X = (z, Z; u, U) E M x M s.t. 
the line joining z and u lies 
outside B, and the lines Z and U 
intersect inside B I 

and 

y = 
the point w lies in B and 

(WY W) E p2 x p; s.t. *e line W lies outside jj 

It is easy to see that Y is biholomorphic to B x B, and hence Stein. We would like to argue 
that X is also Stein. To see this, let L be the line in P2 defined by z3 = 0, and define the 

map 

X + (L x L \diagonal) x Y 
W W (2.4) 

(z,Z;u,U) w (a, b; w, W) 

Here, w is the point of intersection of Z and U and W the line joining z and U. Also, a is 
the point of intersection of Z and L and b is where U and L intersect. 

It is easy to see that it is a biholomorphism. As before, since this is a product of two Stein 
manifolds. it is also Stein. 

Remark 2.12. Points (w, W) of Y parametrize the space of all those Gc translates of the 
maximal compact subvariety Pl 2 K/T E G/T which remain within M; these translates 
are called linear cycles. Given (w, W), the corresponding linear cycle S(w, W) is given 
explicitly by 

S(w, W) = (z, Z) E M s.t. 
the point z lies on the line W 
and the line Z passes through the point w * 

Now define n : X --f M to be projection onto the first factor. It is easy to see that it is 
a fiber bundle with fibers A x A x C, where A is the unit disc in C; hence, the fibers are 
contractible. 

Next, we introduce the line bundle. Consider the character x of T which sends 
diag (eie, ei&, e-i(@+&)) t o ei(ne+bb) (a, b are integers). This induces a homogeneous line 
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bundle O(r, f) of “bidegree” (r, r), where r = --a, t = b. To understand the meaning of this 
“bidegree”, observe that F is a closed submanifold of Pp2 x P;. Let O(r, t) be the restriction 
to IF of the tensor product of a line bundle of degree r over the first factor with one with 
degree I over the second factor. 

We can now follow, almost verbatim, the constructions and arguments in Section 2.2. 
Some details are omitted. 

We use Theorem 1.1, hence H’(f (X, L?; (r, t))) is isomorphic to the Dolbeault coho- 
mology H’ (M, O(r , t)). To proceed further, introduce 

F = [(z, Z; w, W) E M x Y s.t. (z, Z) E S(w, W)). 

We also have the maps x = (Y o B as before. Here, /.? : X + F is the map given by 
/I(z, Z; U, U) = (z, Z; w, W), where w is the point of intersection of Z and U and W the 
line joining z and u. Projection onto the first factor induces a! : F -+ M. 

Observe that the restriction of a*0(r, t) to each fiber of the obvious projection F -+ Y 
is the line bundle of degree d s r + t = b - a over Pt. 

Finally, since F 2 PI x Y, we may use Corollay 2.8 to conclude that there is a direct 
sum decomposition 

r(X, L?;(d)) = kerdi $ imdp. 

Therefore, we can define dz : G?A (r, t) --f ~2: (r, t) bycomposingtheprojection 0: (r, t) + 
f2j(r, t) with di. 

Theorem 2.13. For d = r + t 5 -2, each relative de Rham class in H1 (r(X, s2j: (r, t))) 
has a unique form o s.t. d;w = 0. 

Proo$ One can copy almost verbatim from that for Theorem 2.9. Replace the degree k by 
bidegree (r, t). The only new ingredient is that, when restricted to each copy of Pt (fiber 
of F + Y), we have 

L?A(r, t) g O(d + 1) $ O(d + 1). 

This can be seen as follows. Over the fiber above the point of Y given by w = [ 1 : 0 : 01 
and W = [ 1 : 0 : 01, it can be directly verified. This conclusion can be translated to other 
linear cycles, i.e. to other points of Y, by acting with a suitable element of Gc. 0 

Remark 2.14. The weakly good condition (x + p, cr) 5 0 (cf. [V, Theorem AI]) amounts 
to a ) 1 and b 5 - 1. This condition guarantees the degree one Dolbeault cohomology to be 
irreducible (or zero) and unitarizable. Note also that the weakly good condition guarantees 
the hypothesis for the theorem just stated. 
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